Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

Advanced Linear Algebra (MA 409)

Problem Sheet - 19

Eigenvalues and Eigenvectors

1. Label the following statements as true or false.
(a) Every linear operator on an n-dimensional vector space has n distinct eigenvalues.
(b) If a real matrix has one eigenvector, then it has an infinite number of eigenvectors.
(c) There exists a square matrix with no eigenvectors.
(d) Eigenvalues must be nonzero scalars.
(e) Any two eigenvectors are linearly independent.
(f) The sum of two eigenvalues of a linear operator T is also an eigenvalue of T.
(g) Linear operators on infinite-dimensional vector spaces never have eigenvalues.
(h) An $n \times n$ matrix A with entries from a field F is similar to a diagonal matrix if and only if there is a basis for F^{n} consisting of eigenvectors of A.
(i) Similar matrices always have the same eigenvalues.
(j) Similar matrices always have the same eigenvectors.
(k) The sum of two eigenvectors of an operator T is always an eigenvector of T.
2. For each of the following linear operators T on a vector space V and ordered bases β, compute $[T]_{\beta}$, and determine whether β is a basis consisting of eigenvectors of T.
(a) $V=\mathbb{R}^{3}, T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}3 a+2 b-2 c \\ -4 a-3 b+2 c \\ -c\end{array}\right)$, and

$$
\beta=\left\{\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)\right\}
$$

(b) $V=P_{2}(\mathbb{R}), T\left(a+b x+c x^{2}\right)=$

$$
(-4 a+2 b-2 c)-(7 a+3 b+7 c) x+(7 a+b+5 c) x^{2}
$$

and $\beta=\left\{x-x^{2},-1+x^{2},-1-x+x^{2}\right\}$
(c) $V=P_{3}(\mathbb{R}), T\left(a+b x+c x^{2}+d x^{3}\right)=$

$$
-d+(-c+d) x+(a+b-2 c) x^{2}+(-b+c-2 d) x^{3}
$$

and $\beta=\left\{1-x+x^{3}, 1+x^{2}, 1, x+x^{2}\right\}$
(d) $V=M_{2 \times 2}(\mathbb{R}), T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}-7 a-4 b+4 c-4 d & b \\ -8 a-4 b+5 c-4 d & d\end{array}\right)$, and

$$
\beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{rl}
-1 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right),\left(\begin{array}{rr}
-1 & 0 \\
0 & 2
\end{array}\right)\right\}
$$

3. For each of the following matrices $A \in M_{n \times n}(F)$,
(i) Determine all the eigenvalues of A.
(ii) For each eigenvalue λ of A, find the set of eigenvectors corresponding to λ.
(iii) If possible, find a basis for F^{n} consisting of eigenvectors of A.
(iv) If successful in finding such a basis, determine an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
(a) $A=\left(\begin{array}{rrr}0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5\end{array}\right)$ for $F=\mathbb{R}$
(b) $A=\left(\begin{array}{cc}i & 1 \\ 2 & -i\end{array}\right)$ for $F=\mathrm{C}$
4. For each linear operator T on V, find the eigenvalues of T and an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
(a) $V=\mathbb{R}^{3}$ and $T(a, b, c)=(7 a-4 b+10 c, 4 a-3 b+8 c,-2 a+b-2 c)$
(b) $V=P_{1}(\mathbb{R})$ and $T(a x+b)=(-6 a+2 b) x+(-6 a+b)$
(c) $V=P_{2}(\mathbb{R})$ and $T(f(x))=x f^{\prime}(x)+f(2) x+f(3)$
(d) $V=P_{3}(\mathbb{R})$ and $T(f(x))=x f^{\prime}(x)+f^{\prime \prime}(x)-f(2)$
(e) $V=M_{2 \times 2}(\mathbb{R})$ and $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$
(f) $V=M_{2 \times 2}(\mathbb{R})$ and $T(A)=A^{t}+2 \cdot \operatorname{tr}(A) \cdot I_{2}$
5. Let T be a linear operator on a finite-dimensional vector space V, and let β be an ordered basis for V. Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of $[T]_{\beta}$.
6. Let T be a linear operator on a finite-dimensional vector space V. We define the determinant of T, denoted $\operatorname{det}(T)$, as follows: Choose any ordered basis β for V, and $\operatorname{define} \operatorname{det}(T)=\operatorname{det}\left([T]_{\beta}\right)$.
(a) Prove that the preceding definition is independent of the choice of an ordered basis for V. That is, prove that if β and γ are two ordered bases for V, then $\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left([T]_{\gamma}\right)$.
(b) Prove that T is invertible if and only if $\operatorname{det}(T) \neq 0$.
(c) Prove that if T is invertible, then $\operatorname{det}\left(T^{-1}\right)=[\operatorname{det}(T)]^{-1}$.
(d) Prove that if U is also a linear operator on V, then $\operatorname{det}(T U)=\operatorname{det}(T) \cdot \operatorname{det}(U)$.
(e) Prove that $\operatorname{det}\left(T-\lambda l_{v}\right)=\operatorname{det}\left([T]_{\beta}-\lambda I\right)$ for any scalar λ and any ordered basis β for V.
7. (a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
(b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}.
(c) State and prove results analogous to (a) and (b) for matrices.
8. Prove that the eigenvalues of an upper triangular matrix M are the diagonal entries of M.
9. Let V be a finite-dimensional vector space, and let λ be any scalar.
(a) For any ordered basis β for V, prove that $\left[\lambda l_{V}\right]_{\beta}=\lambda I$.
(b) Compute the characteristic polynomial of λl_{V}.
(c) Show that λl_{V} is diagonalizable and has only one eigenvalue.
10. A scalar matrix is a square matrix of the form λI for some scalar λ; that is, a scalar matrix is a diagonal matrix in which all the diagonal entries are equal.
(a) Prove that if a square matrix A is similar to a scalar matrix λI, then $A=\lambda I$.
(b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.
(c) Prove that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is not diagonalizable.
11. (a) Prove that similar matrices have the same characteristic polynomial.
(b) Show that the definition of the characteristic polynomial of a linear operator on a finitedimensional vector space V is independent of the choice of basis for V.
12. Let T be a linear operator on a finite-dimensional vector space V over a field F, let β be an ordered basis for V, and let $A=[T]_{\beta}$. In reference to the following figure, prove the following.

(a) If $v \in V$ and $\phi_{\beta}(v)$ is an eigenvector of A corresponding to the eigenvalue λ, then v is an eigenvector of T corresponding to λ.
(b) If λ is an eigenvalue of A (and hence of T), then a vector $y \in F^{n}$ is an eigenvector of A corresponding to λ if and only if $\phi_{\beta}^{-1}(y)$ is an eigenvector of T corresponding to λ.
13. For any square matrix A, prove that A and A^{t} have the same characteristic polynomial (and hence the same eigenvalues).
14. (a) Let T be a linear operator on a vector space V, and let x be an eigenvector of T corresponding to the eigenvalue λ. For any positive integer m, prove that x is an eigenvector of T^{m} corresponding to the eigenvalue λ^{m}.
(b) State and prove the analogous result for matrices.
15. (a) Prove that similar matrices have the same trace.

Hint: $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ and $\operatorname{tr}(A)=\operatorname{tr}\left(A^{t}\right)$.
(b) How would you define the trace of a linear operator on a finite-dimensional vector space? Justify that your definition is well-defined.
16. Let T be the linear operator on $M_{n \times n}(\mathbb{R})$ defined by $T(A)=A^{t}$.
(a) Show that ± 1 are the only eigenvalues of T.
(b) Describe the eigenvectors corresponding to each eigenvalue of T.
(c) Find an ordered basis β for $M_{2 \times 2}(\mathbb{R})$ such that $[T]_{\beta}$ is a diagonal matrix.
(d) Find an ordered basis β for $M_{n \times n}(\mathbb{R})$ such that $[T]_{\beta}$ is a diagonal matrix for $n>2$.
17. Let $A, B \in M_{n \times n}(\mathbb{C})$.
(a) Prove that if B is invertible, then there exists a scalar $c \in \mathbb{C}$ such that $A+c B$ is not invertible.
Hint: Examine $\operatorname{det}(A+c B)$.
(b) Find nonzero 2×2 matrices A and B such that both A and $A+c B$ are invertible for all $c \in \mathbb{C}$.
18. Let A and B be similar $n \times n$ matrices. Prove that there exists an n-dimensional vector space V, a linear operator T on V, and ordered bases β and γ for V such that $A=[T]_{\beta}$ and $B=[T]_{\gamma}$.
19. Let A be an $n \times n$ matrix with characteristic polynomial

$$
f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{1} t+a_{0}
$$

(a) Prove that $f(0)=a_{0}=\operatorname{det}(A)$. Deduce that A is invertible if and only if $a_{0} \neq 0$.
(b) Prove that $f(t)=\left(A_{11}-t\right)\left(A_{22}-t\right) \ldots\left(A_{n n}-t\right)+q(t)$, where $q(t)$ is a polynomial of degree at most $n-2$.
Hint: Apply mathematical induction to n.
(c) Show that $\operatorname{tr}(A)=(-1)^{n-1} a_{n-1}$.
20. (a) Let T be a linear operator on a vector space V over the field F, and let $g(t)$ be a polynomial with coefficients from F. Prove that if x is an eigenvector of T with corresponding eigenvalue λ, then $g(T)(x)=g(\lambda) x$. That is, x is an eigenvector of $g(T)$ with corresponding eigenvalue $g(\lambda)$.
(b) State and prove a comparable result for matrices.
(c) Verify (b) for the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right)$ for $F=\mathbb{R}$ with polynomial $g(t)=2 t^{2}-t+1$, eigenvector $x=\binom{2}{3}$, and corresponding eigenvalue $\lambda=4$.
21. Use the above Exercise to prove that if $f(t)$ is the characteristic polynomial of a diagonalizable linear operator T, then $f(T)=T_{0}$, the zero operator.
22. Determine the number of distinct characteristic polynomials of matrices in $M_{2 \times 2}\left(\mathbb{Z}_{2}\right)$.
23. Do matrix-equivalent matrices have the same eigenvalues?

